Partial Correlation Estimation by Joint Sparse Regression Models.

نویسندگان

  • Jie Peng
  • Pei Wang
  • Nengfeng Zhou
  • Ji Zhu
چکیده

In this paper, we propose a computationally efficient approach -space(Sparse PArtial Correlation Estimation)- for selecting non-zero partial correlations under the high-dimension-low-sample-size setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse regression techniques for model fitting. We illustrate the performance of space by extensive simulation studies. It is shown that space performs well in both non-zero partial correlation selection and the identification of hub variables, and also outperforms two existing methods. We then apply space to a microarray breast cancer data set and identify a set of hub genes which may provide important insights on genetic regulatory networks. Finally, we prove that, under a set of suitable assumptions, the proposed procedure is asymptotically consistent in terms of model selection and parameter estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Partial Correlation Estimation by Joint Sparse Regression Models — Supplemental Material

where Y = (y1, · · · , yp) and ỹi = √ σyi,w̃i = wi/σ . These properties are used for the proof of the main results. Note: throughout the supplementary material, when evaluation is taken place at σ = σ̄, sometimes we omit the argument σ in the notation for simplicity. Also we use Y = (y1, · · · , yp) to denote a generic sample and use Y to denote the p× n data matrix consisting of n i.i.d. such sa...

متن کامل

Evaluation of SARIMA time series models in monthly streamflow estimation in Idanak hydrometry station

prediction of hydrological variables is a highly effective tool in water resource management. One of the important tools for modeling hydrological processes is the use of time series modeling and analysis. River series production series can be used by time series models in various studies such as drought, flood, reservoir systems design and many other purposes For this purpose, monthly flow dat...

متن کامل

Joint estimation of sparse multivariate regression and conditional graphical models

Multivariate regression model is a natural generalization of the classical univariate regression model for fitting multiple responses. In this paper, we propose a highdimensional multivariate conditional regression model for constructing sparse estimates of the multivariate regression coefficient matrix that accounts for the dependency structure among the multiple responses. The proposed method...

متن کامل

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

We consider the problem of model selection and estimation in sparse high dimensional linear regression models with strongly correlated variables. First, we study the theoretical properties of the dual Lasso solution, and we show that joint consideration of the Lasso primal and its dual solutions are useful for selecting correlated active variables. Second, we argue that correlation among active...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 104 486  شماره 

صفحات  -

تاریخ انتشار 2009